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Abstract 

Riemann-Hilbert techniques are used in the theory of completely integrable differential equations 
to generate solutions that contain a free function which can be used at least in principle to solve 
initial or boundary-value problems. The solution of a boundary-value problem is thus reduced to the 
identification of the jump data of the Riemann-Hilbert problem from the boundary data. But even 
if this can be achieved, it is very difficult to get explicit solutions since the matrix Riemann-Hilbert 
problem is equivalent to an integral equation. In the case of the Ernst equation (the stationary 
axisymmetric Einstein equations in vacuum), it was shown in a previous work that the matrix 
problem is gauge equivalent to a scalar problem on a Riemann surface. If the jump data of the 
original problem are rational functions, this surface will be compact which makes it possible to 
give explicit solutions in terms of hyperelliptic theta functions. In the present work, we discuss 
Riemann-Hilbert problems on Riemann surfaces in the framework of fibre bundles. This makes it 
possible to treat the compact and the non-compact case in the same setting and to apply general 
existence theorems. O 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduct ion 

Riemann-Hilbert  techniques provide a powerful tool if one wants to solve initial or 

boundary-value problems for completely integrable differential equations. They are used to 

generate solutions with a prescribed singularity structure that contain a free function. In the 
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case of a boundary-value problem, this function has to be chosen in a way that the solution 
takes the prescribed values at the given boundary, and similarly for initial value problems. 

Whereas this does not pose any problems in principle, there is little hope in practice to get 
explicit solutions to boundary-value problems in this way. The reason for this is that the 
free functions (the 'jump data' of the Riemann-Hilbert problem) enter the solutions of the 

differential equation as part of an integral equation from which the solutions have to be 

constructed. This implies that one has to solve this integral equation first on the boundary 
where the boundary data are prescribed in order to determine the jump data. In a second 

step, one has to solve the integral equation with the then fixed jump data in the region under 

consideration. In general, both steps cannot be done explicitly. 
In the case of the stationary axisymmetric Einstein equations, the situation is however 

different. The typical problem one has to consider there is the exterior of a relativistic star 

or a galaxy. Within these models, the matter leads to boundary conditions for the vacuum 

equations if a solution of the Einstein equations in the matter region is known. Special 

cases are two-dimensionally extended matter distributions where the field equations reduce 
to ordinary differential equations, e.g., disks that are discussed in astrophysics as models 

for certain galaxies. Thus one has to consider boundary-value problems for the vacuum 

equations in the case of compact matter distributions where the boundary is the surface 
of the matter, and where the boundary data follow from the metric functions in the matter 

region. Since the vacuum equations are equivalent to a single complex differential equation, 
the Ernst equation [1,2], which is completely integrable [3-5], one can use Riemann-Hilbert 

techniques to solve the resulting boundary-value problems. 

In a previous work [6], it was shown that Riemann-Hilbert problems for the Ernst equation 

with analytic jump functions are gauge equivalent to a scalar problem on a Riemann surface. 

In the case of rational jump data, this surface is compact which makes it possible to give 
explicit solutions to the Ernst equation in terms of hyperelliptic theta functions. Thus it 
is not necessary to consider integral equations in this case. The physical properties of the 

resulting class of solutions were discussed in [7-9] where it was shown that the solutions 
can have the expected regularity properties and asymptotic behaviour. In the present article, 

we discuss the Riemann-Hilbert problems on Riemann surfaces in the framework of fibre 
bundles which makes it possible to treat the case of compact and non-compact Riemann 

surfaces within the same setting. Using a theorem of R6hrl [ 10], we obtain an existence proof 
for the solutions to the Riemann-Hilbert problems. In the case of non-compact Riemann 
surfaces, the constructed bundles are trivial due to Grauert's theorem [ 11 ]. 

The paper is organized as follows: in Section 2, we recall that the Ernst equation can be 
treated as the integrability condition for an overdetermined linear differential system, for 
which we formulate the matrix Riemann-Hilbert problem. As an example we consider the 
scalar problem in the complex plane which can be solved with the help of the Plemelj formula 
[ 12]. The matrix problem for the Ernst equation is equivalent to an integral equation which 
cannot be solved explicitly in general. Explicit solutions can in general only be obtained 
if the jump matrix is diagonal thus implying that the resulting solutions are static. In this 
particular case the Ernst equation reduces to the axisymmetric Laplace equation. By the help 
of gauge transformations of the linear system of the Ernst equation, we are able to transform 
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the matrix problem to a scalar one on a Riemann surface in Section 3. We discuss the relation 

between fibre bundles and Riemann-Hilbert problems on Riemann surfaces. These results 

are used to prove the existence for the solutions of the original problem. In the case of non- 
compact Riemann surfaces, Grauert's theorem [11 ] implies that the constructed bundles are 
trivial. On compact surfaces, we recover the explicit solutions in terms of theta functions. 

2. The R i e m a n n - H i l b e r t  prob lem for the Ernst  equation 

It is well known that the vacuum metric in the stationary and axisymmetric case can be 
written in the Weyl-Lewis-Papapetrou form (see [ 13]) 

ds 2 = - e  2U (dt + a d~b) 2 + e -2U (e2k(dp 2 + d(2) q- p2 d~b2), (2.1) 

where p and ( are Weyl's canonical coordinates and 0t and 0~ are the two commuting 

(asymptotically) timelike, respectively, spacelike Killing vectors. In this case, the field 

equations are equivalent to the Ernst equation for the potential f where f = e 2U + ib, and 

where the real function b is related to the metric functions via b_- = -(i/p)e4C~a:. Here the 

complex variable z stands for z = p + i(. With these settings, the Ernst equation reads 

1 2 

J-~ + 2(z +~z f + f f : fs '  -) (f5 + f : )  = (2.2t 

where a bar denotes complex conjugation in ~;. With a solution of the Ernst equation, the 

metric function U follows directly from the definition of the Ernst potential whereas a and 

k can be obtained from f via quadratures. 
The importance of the formulation of the field equations in terms of the Ernst potential 

arises from the fact that the Ernst equation is completely integrable, see [3-5]. This means 
that the latter can be treated as the integrability condition of an overdetermined linear 

differential system that contains an additional complex parameter, the so called spectral 

parameter, that reflects an underlying symmetry of the Ernst equation. We use the linear 

system for the 2 x 2-matrix 4~ of [5], 

cI).(K,z,~)=I(N O )  K - i ~ .  ( 0 O ) ]  " 0 + - -  4~(K, z, 5.), (2.3~ 
go M 

4 ~ : ( K , z , ~ ) = { ( M  O )  K + i z ( 0  ~ ) }  
" 0 + - - / z o  N ~ ( K ,  z, ~). (2.41 

Here the spectral parameter K resides on a family of Riemann surfaces/2(z, 53 parametrized 

by the physical coordinates z and ~ and given by/zg(K) = (K - f f)(K + iz). A point on 
/2 is denoted by P = (K, g0(K))  with K E C. The functions M and N depend only on z 

and ,; but not on K, and have the form 

M -- N -- - -  (2.5 
f + f '  f + f '  

where f is again the Ernst potential. 
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To construct solutions to the Ernst equation with the help of the above linear system, one 
investigates the singularity structure of the matrices 49:49-1 and 49~49-! with respect to the 
spectral parameter and infers a set of conditions for the matrix 49 that satisfies the linear 

system (2.3) and (2.4). This is done (see e.g. [14]) in: 

T h e o r e m  2.1. Let 49 be subject to the following conditions: 

I. 49 ( P ) is holomorphic and invertible at the branch points Po = - i z  and/5o such that the 
logarithmic derivative 49z 49 - l diverges as ( K + iz) - 1/2 at Po and 49~ 49 - 1 as ( K - i~ )  1/2 

at/50. 
II. All singularities o f  49 on F_, (poles, essential singularities, zeros o f  the determinant 

o f  49, branch cuts and branch points) are regular which means that the logarithmic 

derivatives 49,. 49- l and 49~ 49- l are holomorphic there. 

IlL 49 is subject to the reduction condition 

49(per) = ~r349(e)~rl, (2.6) 

where cr is the involution on E that interchanges the sheets, and ~rl and ~3 are Pauli 

matrices. 

IV. The normalization and reality condition 

4 9 ( P = e e + ) = (  ff -11)  (2.7) 

is fulfilled. 
Then the function f in (2.7) is a solution to the Ernst equation. 

This theorem has the following: 

Corollary 2.2. Let 49 ( P ) be a matrix subject to the conditions o f  Theorem 2.1 and C ( K ) be 

a 2 × 2-matrix that only depends on K E (2 with the properties (the oti are scalar functions) 

C ( K )  =otl (K)I  + a2(K)cq, 

oh (oo) = 1, 0~2(00) = 0. (2.8) 

Then the matrix 49'(P) = 49 (P)C(K)  also satisfies the conditions o f  Theorem 2.1 and 

49' (c~ + ) = 49(c~+ ). 

In other words, matrices 49 which are related through the multiplication from the right 
by a matrix C of the above form lead to the same Ernst potential though their singularity 
structure may be vastly different (the functions ot i need not be holomorphic). Therefore this 
multiplication is called a gauge transformation. 

Theorem 2.1 can be used to construct solutions to the Ernst equation by determining 
the structure and the singularities of 49 in accordance with conditions 1-IV. In the present 
paper, we will concentrate on the Riemann-Hilbert problem for the Ernst equation which 
can be formulated in the following form: Let F be a set of (orientable piecewise smooth) 
contours Fk C E (k = 1 . . . . .  l) such that with P ~ F also /5 E F and P~ E F. Let 
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Gk (P) be matrices on Fk with analytic components and non-vanishing determinant subject 

to the reality condition ~i i ( P ) ~- ~i i ( e ) for the diagonal elements, and ~i j ( P ) = - ~ i  j ( P ) 

for the offdiagonal elements. We define y (t, Fj) = 1 if t 6 Fj and 0 otherwise and G = 

~-~=l y(t,  Fk)Gk. Let G(P ~) = ~rl~(P)crl. Both F and ~ have to be independent of z, 5. 
The matrix q~ has to be everywhere regular except at the contour F where the boundary 
values on both sides of the contours (denoted by q~+) are related via 

• - ( P )  = f f P + ( e ) ~ i ( P ) l P c F i  . (2.9) 

It may be easily checked that a matrix 4~ constructed in this way satisfies the conditions 
of Theorem 2.1. Furthermore, it can be seen from the theorem that the only possible singu- 

larities of the Ernst potential can occur where the conditions are not satisfied, i.e. where q) 
cannot be normalized or where P0 coincides with one of the singularities of q), in our case 

the contour F. The latter makes the Riemann-Hilbert problem very useful if one wants to 
solve boundary-value problems for the Ernst equation: choose the contour F in a way that 

Pc) E F just corresponds to the contour in the meridian (z, ~)-plane where the boundary 
values are prescribed. The Ernst potential will in general not be continuous at this contour, 

but its boundary values will be bounded. Notice however that the Ernst potential will not 
always be singular if P0 coincides with a singularity of ¢' since the latter may be e.g. a pure 

gauge. Theorem 2.1 merely ensures that the solution will be regular at all other points. 

To solve Riemann-Hilbert problems, one basically uses the same methods as in the 

simplest case, the problem in the complex plane for a scalar function 0 ,  see e.g. [15]. If FK 

is a simply connected closed smooth contour and G a non-zero H61der continuous function 
on FK in C, the function 0 that is holomorphic except at the contour FK, where 

0 -  = 0 + G  (2.10) 

is obviously given by the Cauchy integral, 

O(K) = F(K)  exp ~ i  ~ 

where F(K)  is an arbitrary holomorphic function, and where the principal value of the 
logarithm has to be taken. The well-known analytic properties of the Cauchy integral ensure 

that condition (2.10) is satisfied. Formula (2.11) shows that the solution to a Riemann- 
Hilbert problem of the above form is only determined up to a holomorphic function. Since 
F is holomorphic, the solution will be uniquely determined (due to Liouville's theorem) 

by a normalization condition 0(e~)  = 00 for ec ~ Fx. Uniqueness is lost if one allows 
for additional poles since F in (2.11) has then to be replaced by a meromorphic function. 
We note that the above conditions on the contour may be relaxed: F may consist of a set of 
piecewise smooth orientable contours which are not closed. The Plemelj formula, see e.g. 
[ 12], assures that formula (2.11) still gives the solution to (2.10). A normalization condition 
will however only establish uniqueness of the solution if G = 1 at the endpoints of F, i.e. 

if the index of the problem (2.10) vanishes. 
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Riemann-Hilbert problems on the sphere E which occur in the case of the Ernst equation 

can be treated in much the same way as the problems in the complex plane. The basic building 
block for the solutions is the differential of the third kind dO)K+ K-(X) that corresponds 

to the differential d X / ( X  - K) in the complex plane, i.e. a differential that can be locally 

written as F(X,  K) dX, where F(X,  K) is holomorphic except for X = K + and where the 

residues are + 1 respectively. If we make the ansatz 

4 -- 40 -~ ~ X (X) d6OK+ K (X), (2.12) 

F 

where the 2 × 2-matrix X is given by X = Y~/k=j y(t ,  Fk)Xk and where 40 is holomor- 
phic, we get for (2.9) at the contour F with the Plemelj formula 4 + = 4-1 X + 40 + 

(1/27ri) f r  X (X)dWK+K (X). Thus the Riemann-Hilbert problem (2.9) is equivalent to 

the integral equations (at F)  

_l 
~X(~ + 1) + x(X)  dCOK+K- (X)(~ - 1) = 0. (2.13) 

F 

For simplicity, we will only consider the case where the projection of the contour F into 

the complex plane has a simply connected component FK. In [6] we have shown that the 

general problem (2.9) is gauge equivalent to a problem with 

G =  fi 

on F, which is the contour in the + sheet. This gauge transformation does not change the 
singularity structure of 4 (i.e. 4 will only be singular at F). The reduction condition III of 

Theorem 2.1 implies that 

G2= 0 ~ 

on the contour F2 in the --sheet.  Because of the reality conditions for ~, this implies that 
solutions to the Ernst equation that follow from (2.9) contain two real-valued functions 
which correspond to oe and ft. The reduction and reality properties of 4 (see Theorem 2.1) 

make it possible to consider only one component of the matrix, e.g. 412 from which the Ernst 

potential follows as f = 412 (~+) .  With 412 = 7t0 + (1/4zri)Jr,  {(/t0(K) + ~to(X))~ 
(2/t0(X)(X - K))}Z(X,  z, z) dX we obtain the Ernst potential for given a and fl where Z 
is the solution of the integral equation 

c~ + 1 Z - -  ot -- 1 f / to(K) + / t o ( X )  
- - T -  4 ~ i . ,  - - - ~ - ~ - - ~ - ~  z ( x ,  z, ?~) dX 

FI 

fl f /to(X) - / t o ( K )  Z ' X  
4Jri j #---~-)~ZK-) ( ,z,~)dX, (2.14) 

FI 

and where lPo follows from the normalization condition 4 j 2 ( ~ - )  = 1. 
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Explicit solutions can in general only be obtained for diagonal G, i.e. for fl = 0. In this 

case we get with the above formulas f = f = e 2u with 

4zril f v lnc~ U--  / ( K  _ OZ _.}_ p2 dK. (2.15) 
7t 

Thus all solutions are real in this case which implies that they belong to the static Weyl class. 

Since the Ernst equation reduces to the axisymmetric Laplace equation for U if f is real, 
the function U in (2.15) solves the Laplace equation. In fact one can show that the contour 

integral there is equivalent to the Poisson integral with a distributional density. It can also 
be directly seen from expression (2.15) that the dependence on the physical coordinates/9 

and ~" enters through the branch points of the family of surfaces E. 

3. R i e m a n n - H i l b e r t  problems on R i e m a n n  surfaces and vector bundles  

In Section 2 we recalled that matrix Riemann-Hilbert problems cannot be solved in 

general. Only for particular cases one can find an explicit form of the solution. In [6] we 

have shown that in the context of the Ernst equation it is, however, possible to go one 
step further if one drops the condition that the gauge transformed matrix 4 '  has the same 

singularity structure as the original matrix q5 in (2.9). It was furthermore shown there that 
the Riemann-Hilbert problem (2.9) is gauge equivalent to a problem with diagonal matrix 

^ 

~'  = diag(G, 1) on a two-sheeted covering/2 of/2, given by an equation of the form 

fi2(K) = F(K) H(K),  (3.1) 

where F(K) and H(K) are holomorphic functions. They follow from the jump matrix G 

via 

F ( K )  (~11 -- ~12 Jr- ~21 -- ~22)(~11 - - ~ 1 2 -  ~21 +- ~22) 
-- (3.2) 

H ( K )  (~11 '{- ~12 - ~21 - ~22)(~11 -Jr- ~12 + ~21 -{- ~22)' 

whereas the analytic jump function G can be expressed via the components of the original 

jump matrix ~ by 

G + 1 / ( G l l  - ~12 - G21 + G22)(~11 + Gl2 + G21 + G22) 

G - I  -- ./W~ll ~12 7~21 ~ ~  q_ ~12--~21 --~22). (3.3) 

By definition a Riemann surface is given by an equation of the form f ( K ,  #) = 0, where 
f ( K ,  #) is an analytic function of K and/z. If f ( K ,  I-t) is a polynomial in both variables one 
speaks of a compact Riemann surface. Therefore, for our purposes it is sufficient to solve 
a scalar Riemann-Hilbert problem on a four-sheeted Riemann surface which is, dependent 
on the initial variables ~ij ,  either compact or non-compact (if the components of G are 
rational functions, the surface will be compact). 

In the mentioned paper we restricted ourselves to the case of E being compact with 
genus g, where it is possible to give explicit solutions to the Riemann-Hilbert problem in 
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terms of  theta functions. Here we give a characterization of  solutions to Riemann-Hilber t  

problems in terms of  fibre bundle theory, which allows for a treatment of  both the compact  

and non-compact  case. 

It is a well known fact, see [ 16], that there is a relation between Riemann-Hi lber t  problems 

on Riemann surfaces and holomorphic vector bundles over them. To make the paper self- 

consistent, we begin with a brief  introduction into fibre bundle theory, see [17,18]. 

Let us recall what a differentiablefibre bundle is. 

Defini t ion 3.1. A differentiablefibre bundle (E,  M, F,  G, zr) is a 5-tuple consisting of  

I. A differentiable manifold E - the so called total space. 

II. A differentiable manifold M - the so called base space. 

III. A differentiable manifold F - thefibre or typicalfibre. 
IV. A surjective map zr : E ~ M,  called projection. The inverse image zr - l  (p) ------ Fp ~_ 

F o f p  E M is called thefibre at p.  

V. A Lie group G - the structure group - acting on F on the left. 

VI. An open covering { Ui } of  M together with diffeomorphisms q~i : Ui x F ~ zr - l (Ui), 

such that Jr o ~i (P, f )  = P (P ~ Ui, f ~ F). We call ~i the local trivialisation since 

4~,: - l  maps zr -~ (Ui) onto the direct product Ui x F.  

VII. If  we set ~ i , p ( f )  -- dpi(p, f )  then q~i,p : F ~ Fp is a diffeomorphism. If  Ui M Uj 7~ 0 
--I we require that tij ( p )  ":- (bi,p ~j, p F ~ F be an element of  the structure group G. 

Then q~i and 4~j are related by a smooth map tij : Ui N Uj ~ G as 

~j (P, f )  = q~i (P, tij ( p ) f ) .  (3.4) 

We call the {tij} the transition functions. 

Let us say a few words about this definition. If  we take a chart Ui of  the base space M 

then J r -  1 (Ui) is diffeomorphic to Ui x F with diffeomorphism q~/- l : zr-  l (Ui) ~ Ui x F. 

If  the intersection Ui f-I Uj 7~ 0, there are two maps ~i and 4~j on this intersection. Let u ~ E 

such that zr(u) = p ~ Ui M Uj. We then have 

4,71(u) = (p, sS), 4,71(u) = (p, j~). 

There is a map tij : Ui ¢q Uj --> G which relates f i  and 3~: f i  --  t i j ( p ) f j .  
The functions tij (p) cannot be chosen arbitrarily in order to be the transition functions 

of  a fibre bundle. They have to satisfy some consistency conditions: 

t i i(p) = identity map (p ~ Ui) 

t i j(P) = tji(P) -1 (p E Ui 0 Uj) (3.5) 

t i j (p)t j~(p)  = tik(p) (p E Ui N Uj N Uk). 

A fibre bundle is called trivial, if all the transition functions can be taken to be identity 

maps. A trivial bundle is of  the form E = M x F .  

The transition functions are so important because they contain all the information needed 

to construct a fibre bundle. Let us now show how starting from a 5-tuple (M,  {Ui }, {tij (p)}, 
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F, G) a fibre bundle over M with typical fibre F can be constructed. Finding the bundle 

means finding unique E, Jr and ~b i from the above data. We define 

X =~ U ( U i  x F),  (3.6) 
i 

and introduce on X an equivalence relation ~ as follows. We say that (p, f )  ~ Ui x F and 

(q, f ' )  ~ Uj x F are equivalent, (p, f )  ~ (q, f ' ) ,  if and only if p = q and f '  = tii ( P ) f .  
The total space E of  the fibre bundle is then defined by 

E = X~ ~ .  (3.7) 

We denote an element of  E by the equivalence class [(p, f ) ] .  The projection Jr : E ~ M 

is given by 

Jr : [(p, f ) ]  ~ p, (3.8) 

and the local trivialisation q~i : Ui × F ---> re - I  (Ui) is given by 

q~i : (P, f )  --+ [(P, f ) ] ,  (3.9) 

with p ~ Ui and f c F.  The above data reconstruct the bundle E uniquely. 
Let us now make the relation between Riemann-Hilbert problems on Riemann surfaces 

and vector bundles on them more explicit. 

3.1. The compact case 

First we will consider the case that the Riemann surface/~ obtained as the double covering 

via the procedure described in [6] of  the Riemann surface/2 is compact, i.e. we consider 

the Riemann-Hilbert problem 

ck_(P) = ¢a+(P)G(P) (3.10) 

on a compact Riemann surface. Due to the fact that on such surfaces theta functions are 

the basic building blocks for the construction of  meromorphic functions, see [19], we may 

express the solution to (3.10) in terms of  these functions. But, in order to make contact with 

the case of  £ being non-compact, we describe here how a solution to (3.10) is connected 

with some line bundle over ~. To this end we want to make use of  the above result that a 

line bundle over a manifold/~ is completely determined by a triple (~, {Ui }, {tij }), because 

(in this case) we have F = C, G = / 2 " .  Let {Ui} be a covering o f ~  and {~bi(P)} solutions 

to (3.10) in the domains Ui, different from zero. In the domains Ui the original scalar 

Riemann-Hilbert problem is reduced to a problem on the complex plane 12, which can be 

solved (see the discussion in Section 2). 
In other words, the functions dpi(P ) are non-vanishing on Ui and fulfil (3.10) on the 

intersection F n Ui. If  F n Ui = 0 then ~i ( P )  is a holomorphic function in Ui. Let us now 

define some functions t i •P  ) in Ui n Uj by 

ti:~(p ) _ ckj±(P) 
49i+(P)' (3.11) 
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for P ~ Ui N Uj. We have 

dpj_(P) dpj+(P)G(P) _ fbj+(P) _ ti-j(P) ' (3.12) 
t i~(P)  = ¢bi-(P)  = ~pi+(P)G(P)  gA+(P) 

i.e. the functions tij (P )  -- t + u (P)  = t i~(P) do not jump at the contour F. It follows 

immediately from this definition that the tij fulfil the consistency conditions for transition 

functions (3.5). Because the (~i (P) are non-vanishing the functions tij (P) take values in C* 

(the complex numbers different from zero). Therefore, we may define a complex bundle 

with structure group C* and standard fibre C, i.e. a line bundle, BG, over the compact 

Riemann surface £ by the 5-tupel (/~, {Ui}, { t i j (P)} ,  C, C*). In other words: for £ being 

compact we may associate to a Riemann-Hilbert problem (3.10) a line bundle over this 

surface. 

3.2. The non-compact  case 

Let us now turn to the case £ being non-compact. Contrary to the compact case we do not 

have the calculus of theta functions associated to a Riemann surface at our disposal in order 

to construct meromorphic functions. Nevertheless, we may perform a similar construction 

as in the compact case and construct a vector bundle for a Riemann-Hilbert problem given 

on this surface. The remarkable point is now that this vector bundle is, due to a theorem by 

Grauert [11], a trivial one. 

To be more precise, let ~ be equipped with a covering N" = {Ui, i ~ I},  where I denotes 

some set of indices. Let us suppose that there exists a number N, the covering constant, 

such that any point P E £ belongs to no more than N domains of the covering, see [16]. We 

assume that the contour F is compact and closed, dividing ~ into, in general, non-compact 

domains. To simplify the discussion we are looking for solutions ~b(P) with finite Dirichlet 

integral, i.e. 

/ -  d4~ A d~b < ~ ,  (3.13) 

where A ( F )  denotes some neighbourhood of F. Let ¢i (P) be, as above, a non-vanishing 

function on Ui and solving there the Riemann-Hilbert problem (3.10) on the intersection 

F N Ui. If F n Ui = 0 then t~i (P) is a holomorphic function in Ui. Similarly to the compact 
case we now define functions ti:~(P ) in Ui N vj by 

ti:~(p ) = dpj+(P) 
~bi+ (P)" (3.14) 

Again, we have 

dpj_(P) _ fbj+(P)G(P) dpj+(P) _ ti~(p) ' (3.15) 
ti~(P) -- ~i-(P) gPi+(P)G(P) -- 

for P E Ui N Uj, i.e. the functions tij ( P) "-- ti + ( P) = ti~ ( P) do notj ump at F, analogously to 
the compact case. These functions also obey the consistency conditions (3.5) and, therefore, 
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we may associate to the Riemann-Hi lber t  problem (3,10) a vector bundle in the same manner 

as in the compact  case. But, whereas in the compact  case one does not know in advance 

what the global structure of  the bundle space BG looks like, we have in the present case the 

following: 

Theorem 3.2 (Grauert). Any complex line bundle over a non-compact Riemann surface is 

trivial. 

Proof.  The proof  can be found in [ 11 ]. [] 

From this theorem it follows that for non-compact  ~ the line bundle BG associated the 

Riemann-Hi lber t  problem (3.10) has the form 

BG ~ ~ x C. (3.16) 

To conclude, we have shown that for /~  being non-compact  (where one does not have an 

explicit  solution of  the Riemann-Hi lber t  problem in terms of  theta functions) there is a 

simple geometric characterization of  it in terms of fibre bundles over/~.  Due to its local 

properties the bundle approach allows to reduce the scalar Riemann-Hilber t  problems on 

to problems on the complex plane C which can be explicitly solved. For non-compact 

Riemann surfaces £ the resulting total space is given as a direct product whereas in the 

compact case the total space is, in general, twisted in a non-trivial manner. On the other 

hand, in this last case, an explicit  formulation of  the solution in terms of theta functions is 

possible. 
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